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Abstract— This paper presents a novel method that enables
a team of aerial robots to enclose a target in 3D space
by attaining a desired geometric formation around it. We
propose an approach in which each robot obtains its motion
commands using measurements of the relative position of the
other agents and of the target, without the need for a central
coordinator. As contribution, our method permits any desired
3D target enclosing configuration to be defined, in contrast
with the planar circular patterns commonly encountered in
the literature. The proposed control strategy relies on the
minimization of a cost function that captures the collective
motion objective. In our method, the robots do not need to
use a common reference frame. This coordinate independence
is achieved through the introduction in the cost function of a
rotation matrix computed locally by each robot. We prove that
our motion controller is exponentially stable, and illustrate its
performance through simulations.

I. INTRODUCTION

The use of multiple mobile robots to collectively carry

out tasks of interest is a prominent topic within the robotics

research community. In particular, the problem of enclosing

a target using a multirobot team has received significant

attention due to the relevance and diversity of its applications,

which include entrapment of an unfriendly element, escorting

missions, or collective perception of a given location in an

environment.

The target enclosing problem pertains to the generic field

of multiagent formation control [1], a wide area of research

which encompasses very diverse scenarios. A common el-

ement of the existing works in this field is that a group

of robots are required to attain and/or maintain a geomet-

ric pattern typically expressed in terms of absolute agents

positions [2], [3], relative interagent distances [4], [5] or rel-

ative interagent positions [6]–[8]. Circular formations, which

are commonly employed for enclosing tasks, have received

notable attention [9], [10]. The leader-follower formation

control paradigm [11], [12], in which one particular robot

acts as the reference for the others, is closely related to

the problem considered in this paper. A growing number of

works specifically address 3D formation control [13], [14], in

which the higher dimensionality and the dynamics of aerial

vehicles can pose additional challenges.
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Next, we discuss related works in which it is specifically

required for a multirobot team to enclose a target. A null

space-based controller was proposed in [15], while the con-

trol strategy in [16] is defined in cluster space. These two

approaches are centralized and tackle escorting/entrapment

missions. In [17], a distributed and reconfigurable method

employing only local sensing (i.e. not requiring a global

coordinate frame) and the velocity of the target is presented.

The work [18] addresses target enclosing while considering

changing topologies in the robots’ interaction graph, present-

ing a distributed and coordinate-free approach, two properties

also shared by the method in [19], which assumes the

measurements used by the robots are anonymous. In all the

above works, the robots are deployed in a circular formation

around the target, whereas in [20] the use of elliptical

orbits is proposed, in order to account for uncertainty in the

target position estimations. The 3D instance of the enclosing

problem has also been addressed: in [21], target encirclement

in 3D space is achieved via model predictive control, while

in [22] a dynamic network topology is assumed. Recently,

the work [23] extended [19] to deal with a 3D workspace. In

these works [21]–[23], the robots achieve a planar circular

configuration around the target.

The main contribution of our work lies in the fact that

the enclosing of a target in 3D space is achieved with the

robots attaining any desired spatial configuration. We argue

that for the 3D enclosing task, a three dimensional enclosing

pattern provides advantages when compared to a planar one.

In particular, it reduces the size of the escape areas, defined

as the spacing between the enclosing robots. The quality

of the collective perception of the target obtained by the

multirobot team is improved as well. In addition, it can be

interesting to use spatial configurations where the distance

from the target is not the same for all the robots. For instance,

this flexibility enables to increase the number of enclosing

robots while respecting given safety distances between them.

Our method relies on a formation control formulation

based on relative position measurements. Each robot com-

putes its motion command using the measured positions of

the other robots and of the target, with the goal of mini-

mizing a cost function that encapsulates the target enclosing

objective. The method brings the robotic team to a formation

having an arbitrary rotation. This is consistent with the

objective of an enclosing task, for which the rotation of

the multirobot pattern surrounding the target is irrelevant. In

addition, and contrary to the existing relative position-based

formation control approaches, our method does not require

a common reference frame for the robots. This is a relevant

fact since it means that no additional sensors are needed.
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Besides, the robots do not rely on the availability of a global

reference which could be considered superfluous taking into

account the essence of an enclosing mission, in which the

focus is on the target.

In the approach we propose, the agents use global infor-

mation. In this respect, we observe that for the enclosing of

a single target, the number of robots required is typically

modest, as illustrated by the works cited above. Therefore,

the scalability of the system is not as important for this task

as it is for those problems where large multirobot teams may

be involved. We formally prove that the proposed control

method is exponentially stable, and analyze its characteristics

regarding collision avoidance and connectivity maintenance.

II. PROBLEM FORMULATION

Consider a group of N − 1 robots in R
3. Each robot is

identified by an index i ∈ 1, ..., N − 1 and its dynamics

can be expressed through a single integrator model, i.e. it

satisfies:

q̇i = ui, (1)

where qi ∈ R
3 denotes the position vector of robot i and

ui ∈ R
3 is its control input. Let us denote as qN ∈ R

3

the position of the target, i.e. the entity which the multirobot

team is tasked to enclose. The robots and target positions are

expressed in an arbitrary global reference frame.

We define a desired configuration, or formation shape, by

a certain, fixed, reference layout of the N − 1 robots in their

configuration space. We consider the desired configuration as

encoded through a set of inter-robot relative position vectors.

Thus, let us denote as cij,∈ R
3 ∀i, j ∈ 1, ..., N − 1, the

vector from i to j in the reference layout that defines the

desired configuration. We then consider that the robots are

in the desired configuration if this layout has been achieved,

up to a rotation and translation common to all the robots. Let

us define the desired vectors from the target to each of the

N − 1 robots as cNi ∀i ∈ 1, ..., N − 1, and consider that

the desired position of the target is in the centroid of the

desired configuration, i.e.
∑

i∈1,...,N−1 cNi = 0. This paper

addresses the following problem:

Problem 1: Given an initial configuration in which the

robots and the target are in arbitrary positions, the robots

are required to reach a set of final positions such that the

robotic group is in the desired configuration and the target

is in the centroid of the group.

Each robot is assumed to be able to compute, either

through sensing or communications with the other robots,

an estimation of the relative position of every other robot in

the group and of the target. This is the only information used

by the proposed control strategy, which is described in the

following section.

III. TARGET ENCLOSING STRATEGY

This section describes the proposed multirobot control

strategy to carry out the target enclosing task. Let us define

the following cost function:

γ =
∑

i

∑

j

||qij −Rcij||
2
F , (2)

where the the sums are carried out over the set 1, ..., N , and

the subscript F denotes the Frobenius norm, qij = qi − qj,

and R ∈ SO(3) is a rotation matrix. The cost function is

a sum of squared distances that expresses how separated

the set of robots is from achieving the desired configuration

surrounding the target. The introduction in (2) of the rotation

matrix R makes our control method independent of a global

coordinate system, as discussed below. We compute this ma-

trix so as to minimize γ. For this, let us define the following

matrices obtained by stacking the interagent position vectors:

Q = [q11...q1N q21...q2N...qN1...qNN]T

C = [c11...c1N c21...c2N...cN1...cNN]T . (3)

The size of Q and C is N2 × 3. It turns out that we can

find the rotation matrix that minimizes γ using the Kabsch

algorithm [24], which employs Singular Value Decomposi-

tion (SVD) to compute the rotation that aligns two sets of

vectors with minimum quadratic error. In particular, let us

define the matrix A = CTQ, of size 3 × 3. An analytical

expression for the solution to this problem can be given as

follows:

R = (ATA)1/2A−1, (4)

which is not always applicable (e.g. if A is singular). In

contrast, the method in [24] always gives a solution. Specif-

ically, denoting the SVD of A as follows: A = USVT , the

rotation matrix we look for is given by:

R = VDUT = V





1 0 0
0 1 0
0 0 d



UT , (5)

where d = sign(det(VUT )). This SVD-based method is

known to give a unique solution unless rank(A) < 2 or the

smallest singular value of A is degenerate [25]. Let us note

that, for efficiency, A can be computed as A = Co
TQo,

where Qo = [q1o ... qNo]
T , Co = [c1o ... cNo]

T . Co and

Qo are N × 3 matrices, and qo and co are defined as the

centroids of the current and desired sets of robot positions,

respectively.

We define the control law for each agent i as follows:

q̇i = Kc(qNi −RcNi), (6)

where Kc is a positive control gain. It is important to note

that each robot can compute its control input in its own

local coordinate frame. Observe first that qij are relative

measurements, and therefore, there is no need for a common

coordinate origin for the robots. The same holds for the

measurement of the centroid of the robots’ positions. Further-

more, the specific orientation of each robot’s reference frame

is irrelevant. In order to illustrate that a common reference is

not needed, let us denote as Pi ∈ SO(3) the relative rotation

matrix between the global frame and the local frame in which

i operates, i.e. qP
i = Piqi, with qP

i being the position of

i in a frame centered in the global origin and aligned with

the local frame. It can be readily observed that the rotation



matrix computed by robot i, which minimizes (2), is equal

to PiR. Thus, the control law computed in the local frame

has the form (6) when expressed in the global one.

Note, as well, that in a scenario where the robots sense

locally only partial information of the system and obtain

the rest through communications, a global reference is not

needed either. Indeed, assume that robots i and j can sense

and communicate with each other. Clearly, i can compute the

rotation between its local frame and j′s local frame, since

i knows the vector qij expressed in both frames. Thus, i
can compute the positions, in its own frame, of the robots

sensed by j. By extension, considering connected sensing

and communication topologies, it can do so for all the robots.

IV. STABILITY ANALYSIS

This section analyzes the stability of the target enclosing

strategy. Let us make the following assumption:

A1: rank(A) > 1 and the smallest singular value of A

is nondegenerate at every time instant.

We obtain the following result:

Proposition 1: If A1 holds, given a static target and a

set of robots which evolve according to the control law (6),

the multirobot team converges exponentially to the desired

configuration, with the target at the centroid of the set.

Proof: The proof proceeds by showing that Ṙ = 0 ∀t
and inferring exponential stability from that fact. Observe

first that in our controller (6) it is satisfied that R, obtained

using (5), is such that it minimizes γ. Therefore, the gradient

of γ with respect to the rotation matrix R must be null. Let

us express (2) as γ =
∑

i

∑

j γij , with γij = ||qij−Rcij||
2
F ,

and note that A =
∑

i

∑

j Aij, where Aij = cijqij
T . From

[26], where the gradients are derived for a function analogous

to γij , we have:

∇Rγij = RTAij
T −AijR. (7)

We can directly compute ∇Rγ, and impose the condition

that it has to be null. This gives:

∇Rγ = RTAT −AR = 0. (8)

Considering that R is differentiable, we obtain, by differen-

tiating (8) with respect to time:

ṘTAT +RT ȦT − ȦR−AṘ = 0. (9)

In order to find Ṙ from (9), we will first compute Ȧ. For

this, observe that we can directly obtain from (6):

q̇ij(t) = q̇i(t)− q̇j(t) = −Kc[qij(t)−R(t)cij]. (10)

Notice that this also holds for i = N or j = N . Stacking

these vectors, we get:

Q̇ = −Kc(Q−CRT ). (11)

Thus:

Ȧ = CT Q̇ = −Kc(A−CTCRT ). (12)

Substitution of (12) in (9) yields:

ṘTAT −KcR
TAT +KcR

TRCTC

+KcAR −KcC
TCRTR−AṘ = 0. (13)

Using in (13) that R is orthogonal and AR is symmetric

(8), we finally get:

ṘTAT −AṘ = 0. (14)

Observe that Ṙ = 0 is a solution to this equation. Let us

now address the existence of nontrivial solutions. For this, we

express the differentiation of a rotation matrix as Ṙ = BR,

where B is a skew-symmetric matrix [27]. Substituting in

(14) gives:

RTBTAT −ABR = 0. (15)

If we substitute (5) and the SVD of A in (15), we get:

UDVTBTVSUT −USVTBVDUT = 0, (16)

and using that BT = −B, we obtain the expression:

DMS+ SMD = 0, (17)

where we define M = VTBV, which is also skew-

symmetric. Let us denote the entries of S and M as sij
and mij , respectively. Thus, sii are the singular values of

A, in descending order. Then, (17) can be expressed as:

m12(s11 + s22) = 0

m13(s11d+ s33) = 0

m23(s22d+ s33) = 0. (18)

We discuss next the cases in which the only solution to these

equations is the trivial one, i.e. M = 0 (m12 = m13 =
m23 = 0). It is straightforward to see that if d = 1, there

are no other solutions as long as rank(A) > 1 (i.e. if s11 >
s22 > 0). If d = −1, the trivial solution is unique as long as

rank(A) > 1 and s33 6= s22. Thus, due to assumption A1,

we have that M = B = 0, and therefore, Ṙ = 0.

Let us denote the initial value of the rotation as R0. Since

Ṙ = 0 (i.e. R is constant) then, from (10), we can write the

evolution of the relative position vectors as follows:

q̇ij(t) = −Kc[qij(t)−R(t)cij] = −Kc[qij(t)−R0cij],
(19)

which holds for i, j = 1, ..., N , i.e. for the vectors between

two robots or between one robot and the target. Thus, we

can conclude that the system converges exponentially to the

desired configuration and the target is in the centroid of the

attained multirobot formation.

Remark 1: Observe that the cases where we can ensure

Ṙ = 0 correspond to the cases in which the Kabsch al-

gorithm used to compute (5) gives a unique solution (see

Section III). Let us discuss the cases where there are multiple

solutions. The situation rank(A) ≤ 1 corresponds to a

geometric configuration where the robot positions are in

a line in space, while the other case is associated with

degenerate singular values (s33 = s22). Note that, even when

the solution to (5) is not unique, the algorithm always outputs

a valid solution, i.e. a rotation matrix that globally minimizes

γ [25]. As a consequence, we observe that for every pair i
and j, Rcij is equal for all possible valid solutions of R.

Thus, our method performs equally well for any arbitrary

current and desired configurations of the robots in 3D space.

We illustrate this fact in simulation (Section VI).



V. METHOD PROPERTIES

We provide in this section a discussion of a number of

relevant issues concerning the proposed control method.

A. Collision avoidance

The proposed controller allows to predict collisions. To

illustrate this, notice that the predicted evolution of the vector

between robots i and j at a given initial instant t0 has, from

(19), the following form:

qij(t) = qij(t0)e
−Kc(t−t0)+R0cij

[

1− e−Kc(t−t0)
]

. (20)

Thus, we directly see that the vector qij will become null

at t = t0 + ln(2)/Kc if it holds that qij(t0) and R0cij are

parallel and lie on opposite sides of the coordinate origin.

This is explicitly captured in the two following conditions:

qij ×R0cij = 0 and qij
TR0cij < 0. Every agent can eval-

uate these conditions for all other agents, and this predictive

ability can facilitate the actual avoidance of the collisions.

In practice, the geometry of the robots must be taken into

account. If every robot is considered to be contained in a

sphere of radius r centered in its coordinate origin, then a

collision is predicted to occur if ||qij(t)|| ≤ 2r at some t. Let

us outline one possible simple strategy to actually avoid the

collisions, either between robots or between one robot and

the target. This could be done by modifying the control gain

Kc temporarily for the robots that predict a future collision.

The resulting gain imbalance among the robots would then

modify the rotation matrix computed by the group, which

would in turn change the robots’ trajectories and thus allow

the collision to be avoided.

B. Connectivity maintenance

Consider a communications-based implementation of our

approach, where the robots exchange their locally measured

relative position information to gain global knowledge of

the group. Then, the robots form a networked system, which

we can model through a graph Gc = (V , Ec). The edges Ec
express the presence or absence of a direct communication

link between every pair of nodes (associated to robots) in V .

It is typical to use a proximity-based graph model [1], i.e.

one where an edge exists between two robots if the distance

that separates them is less than a given threshold. Assuming

this model, let us define an initial graph G0
c = (V , E0

c ) and

a connected, desired graph Gd
c = (V , Ed

c ), considering the

inter-robot distances in the initial and desired configurations,

respectively. In particular, we define a communication radius

R as the threshold for these proximity-based graphs. We

assume the robots’ sensing ranges are sufficient to ensure

that the control task is fulfilled if Gc remains connected

(e.g. considering a sensing graph, Gs, equal to Gc). Let us

also disregard the effects in the control of the time delays

associated with multi-hop communications in the network.

This is a reasonable assumption considering that the number

of robots in the system is typically small. Then, from

equation (20), it is straightforward to find that the distance

between every pair of robots at any instant satisfies:

||qij(t)|| ≤ max(||qij(t0)||, ||cij||), (21)

where ||cij|| is the desired distance between the pair. Assume

that G0
c is a supergraph of Gd

c , i.e. Ed
c ⊆ E0

c . Thus, for every

pair of robots such that {i, j} ∈ Ed
c , it holds that ||qij(t0)|| <

R and ||cij|| < R. Therefore, none of the edges in Gd
c are

lost throughout the control execution, which guarantees that

connectivity is maintained in the assumed scenario.

C. Formation stabilization

The proposed method can be used for standard formation

stabilization tasks, by simply removing from the control law

the dependencies on the target. Observe that (6) can be

written as follows:

q̇i = Kc





∑

j

qji + qNj −R(
∑

j

cji + cNj)



 . (22)

Keeping only the inter-robot vectors measured by i, we can

define the following control law:

q̇i = Kc





∑

j

qji −R
∑

j

cji



 , (23)

where now the sums are for j = 1, ..., N − 1. It can be

shown that this control law follows the negative gradient of

γ with respect to qi. Thus, it brings the multirobot team

to any arbitrarily specified configuration. Since (10) also

holds when using (23), the convergence is exponential. An

important advantage of this approach is that it does not

require a global reference frame, which differentiates our

method from existing formation stabilization works using

relative position measurements.

VI. SIMULATIONS

This section presents results from simulations to illustrate

the performance of the presented method. In the first exam-

ple, a team of six robots is considered, and the desired con-

figuration is an octahedron. The target in 3D space is static.

Figure 1 illustrates how the robots converge exponentially to

the desired configuration while enclosing the target. Observe

that the 3D rotation of the enclosing multirobot configuration

is arbitrary. The norms of the velocities of the robots, shown

in Fig. 2, exhibit an exponential decay, as theoretically

expected. We illustrate in Fig. 3 how the behavior of the

inter-robot distances satisfies the equation (21), a fact that can

be exploited so as to guarantee connectivity maintenance for

the system (Section V-B). To illustrate that the performance

of our method does not depend on the geometry (current

or desired) of the robotic team’s configuration, we show in

Fig. 4 the results from an example in which the robots are

initially on a plane and the desired configuration is a straight

line with the target at its center.

Although we assumed thus far that the target was station-

ary, we observe that the proposed method can accommodate

a scenario where the target moves. The multirobot system

will be able to keep it enclosed as long as the maximum

velocity achievable by the target is small compared to the

maximum velocity achievable by the robots. The robots’

ability to track the target’s motion can be adjusted with
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Fig. 1. Robot paths from arbitrary initial positions (circles) to the positions
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Fig. 3. Inter-robot distances for the octahedron-shaped configuration.

2

4

6

−2

0

2

4

6

0

1

2

3

x (m)
y (m)

z
 (

m
)

Fig. 4. Robot paths for four robots lying initially on a plane and forming a
straight-line configuration centered on the target, showing the initial (circles)
and final (stars) robot positions and the target position (cross).
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Fig. 5. Robot paths from arbitrary initial positions (circles) to a enclosing,
cube-shaped formation (stars) of a target (cross) moving in a slowly varying
sinusoidal fashion (thick line).

the gain Kc. We illustrate this behavior with a simulation

example where a team of eight robots is considered and

the desired configuration is a cube. The target in 3D space

follows a slowly varying sinusoidal motion pattern. Figure

5 shows how the robots are able to track the motion of the

target and keep it enclosed while approximately maintaining

the desired configuration. Observe again that the 3D rotation

of the multirobot configuration is arbitrary. The cost function

γ, shown in Fig. 6, displays a non-vanishing error, since

the specified geometric configuration is not attained exactly

due to the persistent motion of the target. In addition, the

robot velocities depicted in the same figure show how the

robots track the target’s motion. Notice that if the target is

a friendly agent (as occurs in escorting missions), it may be

able to communicate its velocity to the robots. In that case,

it is straightforward in our method to subtract this velocity

from the control law so that the target is always kept in the

centroid of the multirobot formation.

Finally, we present, for illustration purposes, the results

from an example where the robots maintain the enclosing of
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Fig. 6. Evolution of the cost function γ (left) and norms of the robots’
velocities (right) for the cube-shaped enclosing pattern simulation example.
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Fig. 7. Robot paths for an octahedron desired formation with an additive
cyclic pursuit velocity component, showing the initial (circles) and final
(stars) robot positions and the target position (cross).

the target while they gyrate around it. This is achieved in a

simple manner by incorporating in (6) an additive velocity

component proportional to the relative vector from robot i to

i+1, modulo N − 1 (i.e. a cyclic pursuit strategy). Figure 7

displays the robots’ paths for an example using an octahedron

formation. Further illustration of results from simulations can

be found in the video that accompanies the paper.

VII. CONCLUSION

We have proposed a method to enclose a target in 3D

space using a team of aerial robots. The approach has been

shown to converge exponentially and to provide good perfor-

mance and flexibility in the accomplishment of the required

task. Even though single-target enclosing has been typically

carried out employing modest numbers of robots, it would

be interesting to make the use of information distributed in

our approach, i.e. to make each robot interact only with a

subset of the group. Results observed in simulation suggest

that this would be feasible. One direction for our future work

will be to formally address this problem. In addition, other

interesting issues to consider are a deeper study of collision

avoidance guarantees, a more realistic modeling of vehicle

dynamics, and the effects in the control of time delays due

to multi-hop communications.
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